Everyone wishes they had a crystal ball—especially retailers and consumer goods companies looking for the next big trend, or logistics companies worried about the next big storm.
With a veritable universe of data now at their fingertips (or at least at their keyboards), these companies can now get closer to real-time forecasting across a range of areas when they leverage the right AI and machine learning tools.
For retailers, supply chain, and consumer goods organizations, accurate demand forecasting has always been a key driver of efficient business planning, inventory management, streamlined logistics and customer satisfaction. Accurate forecasting is critical to ensure that the right products, in the right volumes, are delivered to the right locations.
Customers don’t like to see items out of stock, but too much inventory is costly and wasteful. Retailers lose over a trillion dollars a year in mismanaged inventory,
according to IHL Group, whereas a 10% to 20% improvement in demand forecasting accuracy can directly produce a 5% reduction in inventory costs and a 2% to 3% increase in revenue (
Notes from the AI Frontier, McKinsey & Company).
Yet, inventory management is only one of the applications among many that demand forecasting can support—retailers need to also staff their stores and their support centers for busy periods, plan promotions and evaluate different factors that can impact store or online traffic.
As retailers’ product catalog and global reach broaden, the available data becomes more complex and more difficult to forecast accurately. Unconstrained activities through the pandemic have only accentuated supply chain bottlenecks and forecasting challenges as the pace of change has been so rapid.
Retailers can now infuse machine learning into their existing demand forecasting to achieve high forecast accuracy, by leveraging
Vertex AI Forecast. This is one of the latest innovations born of
Google Brain researchers and being made available to enterprises within an accelerated time frame.