People don't always know what they want. That's why they window shop or browse through websites, looking for inspiration.
To help retailers make the online browsing and product discovery experience more modern, faster, intuitive, and fulfilling for shoppers, Google Cloud today introduced a new AI-powered browse feature in its
Discovery AI solutions for retailers. The capability uses machine learning to select the optimal ordering of products on a retailer's ecommerce site once shoppers choose a category, like "women's jackets" or "kitchenware."
Over time, the AI learns the ideal product ordering for each page on an ecommerce site using historical data, optimizing how and what products are shown for accuracy, relevance, and likelihood of making a sale. The feature can be used on a variety of ecommerce site pages, from browse, brand, and landing pages, to navigation and collection pages.
Historically, ecommerce sites have sorted product results based on either category bestseller lists or human-written rules, like manually determining what clothing to highlight based on seasonality. This browse technology takes a whole new approach, self-curating, learning from experience, and requiring no manual intervention. In addition to driving significant improvements in revenue per visit, it can also save retailers the time and expense of manually curating multiple ecommerce pages. The new tool is now generally available to retailers worldwide supporting 72 languages.